Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 414
Filtrar
1.
Mar Drugs ; 20(3)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35323514

RESUMO

The world is already facing the devastating effects of the SARS-CoV-2 pandemic. A disseminated mucormycosis epidemic emerged to worsen this situation, causing havoc, especially in India. This research aimed to perform a multitargeted docking study of marine-sponge-origin bioactive compounds against mucormycosis. Information on proven drug targets and marine sponge compounds was obtained via a literature search. A total of seven different targets were selected. Thirty-five compounds were chosen using the PASS online program. For homology modeling and molecular docking, FASTA sequences and 3D structures for protein targets were retrieved from NCBI and PDB databases. Autodock Vina in PyRx 0.8 was used for docking studies. Further, molecular dynamics simulations were performed using the IMODS server for top-ranked docked complexes. Moreover, the drug-like properties and toxicity analyses were performed using Lipinski parameters in Swiss-ADME, OSIRIS, ProTox-II, pkCSM, and StopTox servers. The results indicated that naamine D, latrunculin A and S, (+)-curcudiol, (+)-curcuphenol, aurantoside I, and hyrtimomine A had the highest binding affinity values of -8.8, -8.6, -9.8, -11.4, -8.0, -11.4, and -9.0 kcal/mol, respectively. In sum, all MNPs included in this study are good candidates against mucormycosis. (+)-curcudiol and (+)-curcuphenol are promising compounds due to their broad-spectrum target inhibition potential.


Assuntos
Antifúngicos , Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Mucormicose/tratamento farmacológico , Poríferos/química , SARS-CoV-2 , Animais , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacocinética , Antifúngicos/toxicidade , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacocinética , Produtos Biológicos/toxicidade , COVID-19/complicações , Coinfecção , Proteínas Fúngicas/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mucormicose/etiologia , Testes de Toxicidade Aguda
2.
BMC Complement Med Ther ; 22(1): 35, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120520

RESUMO

BACKGROUND: The chemokine CXCL12 and its two receptors (CXCR4 and CXCR7) are involved in inflammation and hematopoietic cell trafficking. This study was designed to investigate molecular docking interactions of four popular cardiovascular-active natural compounds; curcumin, resveratrol, quercetin, and eucalyptol; with these receptors and to predict their drug-like properties. We hypothesize that these compounds can modify CXCL12/CXCR4/CXCR7 pathway offering benefits for coronary artery disease patients. METHODS: Docking analyses were carried and characterized by Molecular Environment (MOE) software. Protein Data Bank ( http://www.rcsb.org/ ) has been retrieved from protein structure generation and crystal structures of CXCR4 and CXCR7 receptors (PDB code = 3ODU and 6K3F). The active sites of these receptors were evaluated and extracted from full protein and molecular docking protocol was done for compounds against them. The presented parameters included docking scores, ligand binding efficiency, and hydrogen bonding. The pharmacokinetic/toxic properties (ADME/T) were calculated using SwissADME, ProTox-II, and Pred-hERG softwares to predict drug-like properties of the compounds. The thermochemical and molecular orbital analysis, and molecular dynamics simulations were also done. RESULTS: All compounds showed efficient interactions with the CXCR4 and CXCR7 receptors. The docking scores toward proteins 3ODU of CXCR4 and 6K3F of CXCR7 were - 7.71 and - 7.17 for curcumin, - 5.97 and - 6.03 for quercetin, - 5.68 and - 5.49 for trans-resveratrol, and - 4.88 and - 4.70 for (1 s,4 s)-eucalyptol respectively indicating that all compounds, except quercetin, have more interactions with CXCR4 than with CXCR7. The structurally and functionally important residues in the interactive sites of docked CXCR4-complex and CXCR7-complex were identified. The ADME analysis showed that the compounds have drug-like properties. Only (1 s,4 s)-Eucalyptol has potential weak cardiotoxicity. The results of thermochemical and molecular orbital analysis and molecular dynamics simulation validated outcomes of molecular docking study. CONCLUSIONS: Curcumin showed the top binding interaction against active sites of CXCR4 and CXCR7 receptors, with the best safety profile, followed by quercetin, resveratrol, and eucalyptol. All compounds demonstrated drug-like properties. Eucalyptol has promising potential because it can be used by inhalation or skin massage. To our knowledge, this is the first attempt to find binding interactions of these natural agents with CXCR4 and CXCR7 receptors and to predict their druggability.


Assuntos
Produtos Biológicos , Fármacos Cardiovasculares , Simulação de Dinâmica Molecular , Receptores CXCR4 , Receptores CXCR , Transdução de Sinais , Produtos Biológicos/farmacocinética , Fármacos Cardiovasculares/farmacocinética , Humanos , Simulação de Acoplamento Molecular
3.
Mar Drugs ; 20(2)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35200627

RESUMO

As a continuation of our research on the chemical reactivity, pharmacokinetics and ADMET properties of cyclopeptides of marine origin with potential therapeutic abilities, in this work our already presented integrated molecular modeling protocol has been used for the study of the chemical reactivity and bioactivity properties of the Veraguamides A-G family of marine natural drugs. This protocol results from the estimation of the conceptual density functional theory (CDFT) chemical reactivity descriptors together with several chemoinformatics tools commonly considered within the process of development of new therapeutic drugs. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides, and it is a protocol that allows the estimation with great accuracy of the CDFT-based reactivity descriptors and the associated physical and chemical properties, which can aid in determining the ability of the studied peptides to behave as potential useful drugs. Moreover, the superiority of the MN12SX density functional over other long-range corrected density functionals for the prediction of chemical and physical properties in the presence of water as the solvent is clearly demonstrated. The research was supplemented with an investigation of the bioactivity of the molecular systems and their ADMET (absorption, distribution, metabolism, excretion, and toxicity) parameters, as is customary in medicinal chemistry. Some instances of the CDFT-based chemical reactivity descriptors' capacity to predict the pKas of peptides as well as their potential as AGE inhibitors are also shown.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/farmacocinética , Depsipeptídeos/farmacocinética , Produtos Biológicos/química , Produtos Biológicos/toxicidade , Quimioinformática , Teoria da Densidade Funcional , Depsipeptídeos/química , Depsipeptídeos/toxicidade , Modelos Moleculares
4.
Eur J Med Chem ; 229: 114067, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34973507

RESUMO

Drugs have been largely inspired from natural products, while enzymes underlying their biosynthesis have enabled complex structures and diverse bioactivities. Nevertheless, the high enzyme specificity and limited in vivo precursor types have restricted the natural product reservoir, but Nature has imprinted natural products with active sites, which can be readily modified by chemosynthesis with various functional groups for more favorable druggability. Here in the less exploited fungal natural products, we introduced CtvA, a polyketide synthase for a mycotoxin citreoviridin biosynthesis in Aspergillus, into an endophytic fungus Calcarisporium arbuscula to expand tetrahydrofuran (THF) into a dioxabicyclo-octane (DBO) ring moiety based on versatility and promiscuity of the aurovertin biosynthetic enzyme. Alternative acylations on the hydroxyl groups essential for cell toxicity by chemosynthesis produced compounds with improved anti-tumor activities and pharmacokinetics. Thus, we showed an effective strategic way to optimize the fungal natural product efficiently for more promising drug development.


Assuntos
Antineoplásicos/química , Aurovertinas/química , Produtos Biológicos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Octanos/química , Policetídeo Sintases/metabolismo , Acilação , Antineoplásicos/farmacocinética , Aspergillus , Produtos Biológicos/farmacocinética , Proliferação de Células , Furanos/química , Humanos , Hypocreales , Micotoxinas/metabolismo
5.
J Pharmacol Exp Ther ; 380(3): 162-170, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058349

RESUMO

The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats. After intravenous administration to healthy animals, the drug's plasma half-life (t 1/2) for males and females was 0.26 and 0.3 hours in mice and 19.4 and 14.5 hours in rats, respectively. After intrarectal administration, drug was detected at very low levels in only four samples of mouse plasma, with no correlation to colon epithelial integrity. No drug was detected in rat plasma. A single intrarectal dose of 0.1 µM (0.6 µg/mouse) EPICERTIN significantly facilitated the healing of damaged colonic epithelium as determined by disease activity index and histopathological scoring, whereas 10-fold higher or lower concentrations showed no effect. For acute toxicity evaluation, healthy rats were given a single intrarectal administration of various doses of EPICERTIN with sacrifice on Day 8, recording body weight, morbidity, mortality, clinical pathology, and gross necropsy observations. There were no drug-related effects of toxicological significance. The no observed adverse effect level (intrarectal) in rats was determined to be 5 µM (307 µg/animal, or 5.2 µg drug/cm2 of colorectal surface area), which is 14 times the anticipated intrarectally delivered clinical dose. SIGNIFICANCE STATEMENT: EPICERTIN is a candidate wound-healing biologic for the management of ulcerative colitis. This study determined for the first time the intravenous and intrarectal pharmacokinetics and bioavailability of the drug in healthy and colitic mice and healthy rats, and its acute safety in a dose-escalation study in rats. An initial therapeutic dose in colitic mice was also established. EPICERTIN delivered intrarectally was minimally absorbed systemically, was well tolerated, and induced epithelial wound healing topically at a low dose.


Assuntos
Produtos Biológicos , Colite Ulcerativa , Cicatrização , Administração Tópica , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/efeitos adversos , Produtos Biológicos/farmacocinética , Colite Ulcerativa/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Roedores , Cicatrização/efeitos dos fármacos
7.
Biomed Pharmacother ; 145: 112416, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781147

RESUMO

Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Compostos Fitoquímicos/administração & dosagem , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Produtos Biológicos/farmacocinética , Portadores de Fármacos/química , Desenvolvimento de Medicamentos , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Nanomedicina , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Solubilidade
8.
Clin Transl Sci ; 15(2): 322-329, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34699676

RESUMO

Pharmacokinetic drug interactions precipitated by botanical and other natural products (NPs) remain critically understudied. Investigating these complex interactions is fraught with difficulties due to the methodologic and technical challenges associated with the inherently complex chemistries and product variability of NPs. This knowledge gap is perpetuated by a continuing absence of a harmonized framework regarding the design of clinical pharmacokinetic studies of NPs and NP-drug interactions. Accordingly, this Recommended Approach, the fourth in a series of Recommended Approaches released by the Center of Excellence for Natural Product Drug Interaction Research (NaPDI Center), provides recommendations for the design of clinical pharmacokinetic studies involving NPs. Building on prior Recommended Approaches and data generated from the NaPDI Center, such a framework is presented for the design of (1) phase 0 studies to assess the pharmacokinetics of an NP and (2) clinical pharmacokinetic NP-drug interaction studies. Suggestions for NP sourcing, dosing, study design, participant selection, sampling periods, and data analysis are presented. With the intent to begin addressing the gap between regulatory agencies' guidance documents about drug-drug interactions and contemporary NPDI research, the objective of this Recommended Approach is to propose methods for the design of clinical pharmacokinetic studies of NPs and NP-drug interactions.


Assuntos
Comitês Consultivos , Produtos Biológicos/farmacocinética , Interações Medicamentosas , Preparações Farmacêuticas , Guias como Assunto , Humanos , Projetos de Pesquisa
9.
J Clin Pharmacol ; 62(1): 36-45, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411322

RESUMO

The risk in terms of safety or diminished efficacy of switching between an originator biological product and a proposed interchangeable product is an important consideration for interchangeability evaluation in the regulatory framework. This simulation study evaluated the impact of several switching study design scenarios on the pharmacokinetic (PK) assessment between a virtual originator biological product and a virtual proposed interchangeable product. Our results show that (1) at least 3 switches are needed to optimize the detection of potential PK differences, (2) the initial incidence of antidrug antibodies after treatment with the reference product in the lead-in period is a significant covariate affecting the PK results, and (3) the area under the concentration-time curve is more sensitive than peak concentration in assessing the impact of switching on PK similarity. Our simulation work illustrates that a range of factors should be carefully considered when designing a switching study for the assessment of interchangeability between 2 biological products.


Assuntos
Produtos Biológicos/farmacocinética , Área Sob a Curva , Medicamentos Biossimilares/farmacocinética , Simulação por Computador , Humanos , Taxa de Depuração Metabólica , Modelos Biológicos , Equivalência Terapêutica
10.
Handb Exp Pharmacol ; 273: 97-120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33474672

RESUMO

Neuropharmacokinetics considers cerebral drug distribution as a critical process for central nervous system drug action as well as for drug penetration through the CNS barriers. Brain distribution of small molecules obeys classical rules of drug partition, permeability, binding to fluid proteins or tissue components, and tissue perfusion. The biodistribution of all drugs, including both small molecules and biologics, may also be influenced by specific brain properties related to brain anatomy and physiological barriers, fluid dynamics, and cellular and biochemical composition, each of which can exhibit significant interspecies differences. All of these properties contribute to select optimal dosing paradigms and routes of drug delivery to reach brain targets for classical small molecule drugs as well as for biologics. The importance of these properties for brain delivery and exposure also highlights the need for efficient new analytical technologies to more comprehensively investigate drug distribution in the CNS, a complex multi-compartmentalized organ system.


Assuntos
Produtos Biológicos , Encéfalo , Produtos Biológicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Preparações Farmacêuticas/metabolismo , Especificidade da Espécie , Distribuição Tecidual
11.
Pharm Res ; 38(12): 2129-2145, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34904202

RESUMO

PURPOSE: Rebamipide (REB) a potent anti-ulcer agent, has not been exploited to its full potential, owing to it extremely poor solubility, leading to highly diminutive bioavailability (<10%). The purpose is to carry out its solid-state modification. METHOD: Cocrystallisation was done with three GRAS coformers namely citric acid (CA), 3,4-dihydroxybenzoic acid (DHBA) and oxalic acid (OXA) employing the liquid-assisted grinding method. Cocrystal formation was based upon amide-carboxyl and amide-hydroxyl supramolecular synthons. Characterization of novel cocrystals i.e. RCA, RDHBA and ROXA was carried out by DSC, PXRD and additionally by FT-IR spectroscopy. Chemical structures have been determined utilizing the PXRD pattern by Material Studio®. Furthermore, cocrystals were subjected to solubility and intrinsic dissolution rate (IDR) evaluation. Also, pharmacodynamic and pharmacokinetic studies were performed and compared with pure rebamipide. RESULT: The appearances of a single sharp melting endotherm in DSC, along with novel characteristic peaks in PXRD infer the existence of a new crystalline form. Shifting in characteristic vibrations in FT-IR spectroscopy supports the establishment of distinct hydrogen-bonded networks. Structural determination revealed that RCA crystallizes in 'Bb2b' space groups whereas RDHBA in 'P1' and ROXA crystallize out in the 'P-1' space group. All the cocrystals exhibited superior apparent solubility and almost 7-13 folds increase in IDR. Furthermore, 1.6-2.5 folds enhancement in relative bioavailability and remarkable amplification in anti-ulcer, anti-inflammatory and the antioxidant potential of these cocrystals were observed. CONCLUSION: The study ascertains the advantages of cocrystallization, with RCA showing greatest potential and suggests a viable alternative approach for improved formulation of rebamipide.


Assuntos
Alanina/análogos & derivados , Produtos Biológicos/química , Engenharia Química , Edema/tratamento farmacológico , Quinolonas/química , Úlcera Gástrica/tratamento farmacológico , Alanina/administração & dosagem , Alanina/química , Alanina/farmacocinética , Animais , Disponibilidade Biológica , Produtos Biológicos/farmacocinética , Carragenina/administração & dosagem , Carragenina/imunologia , Química Farmacêutica/métodos , Cristalização , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Edema/induzido quimicamente , Edema/imunologia , Humanos , Ligação de Hidrogênio , Indometacina , Masculino , Difração de Pó , Quinolonas/administração & dosagem , Quinolonas/farmacocinética , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Úlcera Gástrica/induzido quimicamente
12.
Eur J Pharm Biopharm ; 169: 189-199, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34756974

RESUMO

Poor solubility of drug candidates is a well-known and thoroughly studied challenge in the development of oral dosage forms. One important approach to tackle this challenge is the formulation as an amorphous solid dispersion (ASD). To reach the desired biopharmaceutical improvement a high supersaturation has to be reached quickly and then be conserved long enough for absorption to take place. In the presented study, various formulations of regorafenib have been produced and characterized in biorelevant in-vitro experiments. Povidone-based formulations, which are equivalent to the marketed product Stivarga®, showed a fast drug release but limited stability and robustness after that. In contrast, HPMCAS-based formulations exhibited excellent stability of the supersaturated solution, but unacceptably slow drug release. The attempt to combine the desired attributes of both formulations by producing a ternary ASD failed. Only co-administration of HPMCAS as an external stabilizer to the rapidly releasing Povidone-based ASDs led to the desired dissolution profile and high robustness. This optimized formulation was tested in a pharmacokinetic animal model using Wistar rats. Despite the promising in-vitro results, the new formulation did not perform better in the animal model. No differences in AUC could be detected when compared to the conventional (marketed) formulation. These data represent to first in-vivo study of the new concept of external stabilization of ASDs. Subsequent in-vitro studies revealed that temporary exposure of the ASD to gastric medium had a significant and long-lasting effect on the dissolution performance and externally administered stabilizer could not prevent this sufficiently. By applying the co-administered HPMCAS as an enteric coating onto Stivarga tablets, a new bi-functional approach was realized. This approach achieved the desired tailoring of the dissolution profile and high robustness against gastric medium as well as against seeding.


Assuntos
Liberação Controlada de Fármacos/efeitos dos fármacos , Metilcelulose/análogos & derivados , Compostos de Fenilureia , Piridinas , Solubilidade/efeitos dos fármacos , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/farmacocinética , Formas de Dosagem , Vias de Administração de Medicamentos , Composição de Medicamentos/métodos , Excipientes/administração & dosagem , Excipientes/farmacocinética , Metilcelulose/administração & dosagem , Metilcelulose/farmacocinética , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacocinética , Povidona/química , Povidona/farmacologia , Piridinas/administração & dosagem , Piridinas/farmacocinética , Ratos , Extração em Fase Sólida/métodos , Comprimidos com Revestimento Entérico/administração & dosagem , Comprimidos com Revestimento Entérico/farmacocinética
13.
Molecules ; 26(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34770873

RESUMO

As antimicrobial resistance has been increasing, new antimicrobial agents are desperately needed. Azalomycin F, a natural polyhydroxy macrolide, presents remarkable antimicrobial activities. To investigate its pharmacokinetic characteristics in rats, the concentrations of azalomycin F contained in biological samples, in vitro, were determined using a validated high-performance liquid chromatography-ultraviolet (HPLC-UV) method, and, in vivo, samples were assayed by an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method. Based on these methods, the pharmacokinetics of azalomycin F were first investigated. Its plasma concentration-time courses and pharmacokinetic parameters in rats were obtained by a non-compartment model for oral (26.4 mg/kg) and intravenous (2.2 mg/kg) administrations. The results indicate that the oral absolute bioavailability of azalomycin F is very low (2.39 ± 1.28%). From combinational analyses of these pharmacokinetic parameters, and of the results of the in-vitro absorption and metabolism experiments, we conclude that azalomycin F is absorbed relatively slowly and with difficulty by the intestinal tract, and subsequently can be rapidly distributed into the tissues and/or intracellular f of rats. Azalomycin F is stable in plasma, whole blood, and the liver, and presents plasma protein binding ratios of more than 90%. Moreover, one of the major elimination routes of azalomycin F is its excretion through bile and feces. Together, the above indicate that azalomycin F is suitable for administration by intravenous injection when used for systemic diseases, while, by oral administration, it can be used in the treatment of diseases of the gastrointestinal tract.


Assuntos
Produtos Biológicos/farmacocinética , Macrolídeos/farmacocinética , Streptomyces/química , Animais , Biofilmes , Produtos Biológicos/sangue , Produtos Biológicos/química , Fígado/química , Fígado/metabolismo , Macrolídeos/sangue , Macrolídeos/química , Masculino , Ratos , Ratos Sprague-Dawley , Streptomyces/metabolismo
14.
Life Sci ; 286: 120042, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678262

RESUMO

At present, little information on the biopharmaceutical behaviour of proton pump inhibitors (PPIs) describing their absorption and biodistribution in vivo has been reported because the extreme instability of PPIs in the gastrointestinal environment makes it difficult to analyze such behaviour. In this work, a modified rat in situ intestinal perfusion model was employed to investigate absorption in the gastrointestinal tract and subsequent biodistribution of several PPIs (ilaprazole, esomeprazole and rabeprazole), which have different physicochemical properties. Our data indicated that PPIs exhibited significantly enhanced absorption rates in the whole intestine, including the duodenum, jejunum, ileum and colon, corresponding to the increase in the oil-water partition coefficient (LogP). PPIs and corresponding salt types showed no obvious differences in absorption, implying that solubility changes in the PPI have little effect on its absorption in the gastrointestinal tract. Among these PPIs, ilaprazole presented a more stable intestinal absorption behaviour, as well as more distribution and longer residence time in the stomach by HPLC-MS/MS analysis and radioactivity counts after 14C radiolabelling. These results may be useful information for PPI optimization and oral formulation design.


Assuntos
Absorção Fisico-Química/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Inibidores da Bomba de Prótons/farmacologia , 2-Piridinilmetilsulfinilbenzimidazóis/farmacologia , Absorção Fisico-Química/fisiologia , Adsorção , Animais , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Fenômenos Químicos/efeitos dos fármacos , China , Esomeprazol/farmacologia , Feminino , Íleo/metabolismo , Absorção Intestinal/fisiologia , Jejuno/metabolismo , Masculino , Inibidores da Bomba de Prótons/metabolismo , Inibidores da Bomba de Prótons/farmacocinética , Rabeprazol/farmacologia , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Distribuição Tecidual/efeitos dos fármacos
15.
Mar Drugs ; 19(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34677481

RESUMO

This study provides a review of all isolated natural products (NPs) reported for sponges within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their geographic and physico-chemical parameters. Physico-chemical parameters were used in this study to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida sponges was applied to systematically explore the chemical space relationships between taxonomy, secondary metabolite and drug score variables, allowing for the identification of differences and correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks provided a platform to explore chemical diversity as well as the use of chemical similarity networks to link pharmacokinetic properties with structural similarity. This study paves the way for future applications of network analysis procedures in the field of natural products for any order or family.


Assuntos
Produtos Biológicos/farmacocinética , Farmacologia em Rede , Poríferos , Animais , Organismos Aquáticos , Produtos Biológicos/química , Descoberta de Drogas
16.
Curr Top Med Chem ; 21(26): 2365-2373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34525921

RESUMO

Natural products are an important source of bioactive molecules. However, the development of biological applications based on these compounds is hindered by intrinsic problems in their solubility, volatility, degradation, and bioavailability. Nanocarriers as drug administration systems promise to overcome these limitations by providing controlled and directed delivery. This review aims to present 1) the most frequently used nanocarriers as natural product administration systems, based on the progress of controlled and directed release, and 2) the challenges associated with the use of nanocarriers as therapeutic agents.


Assuntos
Produtos Biológicos/administração & dosagem , Produtos Biológicos/farmacocinética , Portadores de Fármacos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/administração & dosagem , Animais , Produtos Biológicos/química , Humanos , Nanomedicina/métodos
17.
Int J Biol Macromol ; 191: 1114-1125, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592225

RESUMO

Angiotensin-converting enzyme 2 (ACE2), also known as peptidyl-dipeptidase A, belongs to the dipeptidyl carboxydipeptidases family has emerged as a potential antiviral drug target against SARS-CoV-2. Most of the ACE2 inhibitors discovered till now are chemical synthesis; suffer from many limitations related to stability and adverse side effects. However, natural, and selective ACE2 inhibitors that possess strong stability and low side effects can be replaced instead of those chemicals' inhibitors. To envisage structurally diverse natural entities as an ACE2 inhibitor with better efficacy, a 3D structure-based-pharmacophore model (SBPM) has been developed and validated by 20 known selective inhibitors with their correspondence 1166 decoy compounds. The validated SBPM has excellent goodness of hit score and good predictive ability, which has been appointed as a query model for further screening of 11,295 natural compounds. The resultant 23 hits compounds with pharmacophore fit score 75.31 to 78.81 were optimized using in-silico ADMET and molecular docking analysis. Four potential natural inhibitory molecules namely D-DOPA (Amb17613565), L-Saccharopine (Amb6600091), D-Phenylalanine (Amb3940754), and L-Mimosine (Amb21855906) have been selected based on their binding affinity (-7.5, -7.1, -7.1, and -7.0 kcal/mol), respectively. Moreover, 250 ns molecular dynamics (MD) simulations confirmed the structural stability of the ligands within the protein. Additionally, MM/GBSA approach also used to support the stability of molecules to the binding site of the protein that also confirm the stability of the selected four natural compounds. The virtual screening strategy used in this study demonstrated four natural compounds that can be utilized for designing a future class of potential natural ACE2 inhibitor that will block the spike (S) protein dependent entry of SARS-CoV-2 into the host cell.


Assuntos
Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Produtos Biológicos/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/farmacocinética , Antivirais/toxicidade , Sítios de Ligação , Produtos Biológicos/farmacocinética , Produtos Biológicos/toxicidade , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade
18.
J Ethnopharmacol ; 281: 114544, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34419608

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Marsdenia tenacissima (Roxb.) Wight et Arn is a medicinal plant mainly distributed in southwest China. It is used in folk medicine for the treatment of tumors and is synergistic with chemotherapies. In our previous study, 11α-O-2-methybutyryl-12ß-O-tigloyl-tenacigenin B (MT2), a main steroid aglycone isolated from the total aglycones of M. tenacissima, significantly enhanced the in vivo antitumor effect of paclitaxel in mice bearing human tumor xenografts, showing its potential as a chemosensitizer. However, the pharmacokinetic characteristics, plasma protein binding rate, and metabolic profile of MT2 remain unclear. AIM OF THE STUDY: To elucidate the pharmacokinetic characteristics, plasma protein binding rate, and metabolic profile of MT2 in rats. MATERIALS AND METHODS: MT2 in rat plasma and phosphate-buffered saline was quantified using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method, while the MT2 metabolites in rat liver microsomes were analyzed using UPLC-triple time-of-flight MS/MS. RESULTS: For intravenously administered MT2, the maximum plasma concentration and the area under the plasma concentration-time curve indicated dose dependency, while the elimination half-life time, the mean residence time, apparent volume of distribution and total apparent clearance values remained relatively unchanged in both the 5 mg/kg and 10 mg/kg groups. For orally administered MT2, the bioavailability was 1.08-1.11%. In rat plasma, MT2 exhibited a protein binding rate of 93.84-94.96%. In rat liver microsomes, MT2 was metabolized by oxidation alone or in combination with demethylation, and five MT2 metabolites were identified. CONCLUSION: MT2 has low oral bioavailability and a high plasma protein binding rate in rats. After administration, MT2 is transformed into oxidative metabolites in the liver. To achieve a high blood concentration of MT2, it should be administered intravenously. These findings would serve as a reference for further MT2-based pharmacological study and drug development.


Assuntos
Produtos Biológicos/farmacocinética , Proteínas Sanguíneas/metabolismo , Marsdenia/química , Extratos Vegetais/farmacocinética , Administração Oral , Adsorção , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Produtos Biológicos/metabolismo , Proteínas Sanguíneas/química , Cromatografia Líquida , Medicamentos de Ervas Chinesas , Meia-Vida , Injeções Intravenosas , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Paclitaxel/análogos & derivados , Paclitaxel/química , Fitoterapia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
19.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205768

RESUMO

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proteases 3C de Coronavírus/química , Poríferos/química , Poríferos/metabolismo , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/efeitos dos fármacos , Amino Açúcares/química , Amino Açúcares/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacocinética , Biologia Computacional , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Piridinas/química , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
20.
Molecules ; 26(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200887

RESUMO

Royal jelly is a natural substance produced by worker bees that possesses a variety of biological activities, including antioxidant, anti-inflammatory, antibacterial, and protective. Although fresh royal jelly is kept at low temperatures, to increase its stability, it needs to be incorporated into pharmaceutical formulations, such as in situ gels. The aim of this study was to formulate in situ ocular gels containing Lithuanian royal jelly for topical corneal use in order to increase the retention time of the formulation on the ocular surface and bioavailability. Gels were evaluated for physicochemical characteristics (pH, rheological properties, refractive index) and in vitro drug release measuring the amount of 10-hydroxy-2-decenoic acid (10-HDA). An ocular irritation test and cell viability tests were performed using the SIRC (Statens Seruminstitut Rabbit Cornea) cell culture line. Results indicated that all the in situ gels were within an acceptable pH and refractive index range close to corneal properties. Rheology studies have shown that the gelation temperature varies between 25 and 32 °C, depending on the amount of poloxamers. The release studies have shown that the release of 10-HDA from in situ gels is more sustained than royal jelly suspension. All gel formulations were non-irritant according to the short-time exposure test (STE) using the SIRC cell culture line, and long-term cell viability studies indicated that the formulations used in small concentrations did not induce cell death. Prepared in situ gels containing royal jelly have potential for ocular drug delivery, and they may improve the bioavailability, stability of royal jelly, and formation of non-irritant ocular formulations.


Assuntos
Córnea/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Géis/química , Géis/farmacologia , Animais , Abelhas/metabolismo , Disponibilidade Biológica , Produtos Biológicos/química , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Córnea/metabolismo , Ácidos Decanoicos/química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Excipientes/química , Géis/farmacocinética , Poloxâmero/química , Coelhos , Reologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...